

CORRELATION AND PATH CO-EFFICIENT ANALYSIS OF QUANTITATIVE AND QUALITATIVE TRAITS IN CHILLI (*CAPSICUM ANNUUM* L.)

SATISH KADWEY*, ASHWINI DADIGA, SUNIL PRAJAPATI AND RAVI KUMAR TELUGU

Department of Horticulture (Vegetable Science),

Jawaharlal Nehru Krishi Vishwa Vidyalaya, Jabalpur - 482 004 (Madhya Pradesh), INDIA e-mail: satish.kadwe07@gmail.com

KEYWORDS Chilli Capsicum annuum L. Correlation Path co-efficient analysis Yield Received on : 19.12.2015 Accepted on : 16.09.2015 *Corresponding	ABSTRACT A field experiment was conducted during <i>Rabi</i> of 2012-13 at Vegetable Research Farm, Department of Horticulture, JNKVV, Jabalpur (M. P.). The experiment was laid out in Randomized Complete Block Design with 25 Chilli genotypes. The result express that seed yield plant ¹ with dry fruit yield plant ¹ (0.537), fruit yield plot ¹ (0.368) and fruit yield ha ⁻¹ (0.368). Dry fruit yield plant ¹ with green fruit yield plant ¹ (0.573), fruit yield plot ¹ (0.390) and fruit yield plot ¹ (0.390) and fruit yield plot ¹ expressed highly significant and positive correlation with fruit yield ha ⁻¹ (0.999). Highest positive direct effect <i>viz.</i> , green fruit yield plant ¹ (0.106), days to flower initiation (0.097), plant height at 90 DAT (0.145), seed yield plant ⁻¹ (0.106), days to flower initiation (0.097), plant height at 60 DAT (0.095), dry fruit yield plant ¹ (0.061), number of primary branches plant ⁻¹ at 00 DAT (0.053). Whereas, the highest negative direct effect <i>viz.</i> , green fruit yield at 30 DAT (0.106), dry fruit weight (-0.090), plant height at 120 DAT (-0.085), fruit width (-0.049). Genotype US-611,-214, 947, 349,113, US-991, 2011/CHIVAR-3,-4, 5, 9, 2012/CHIVAR-2, 3 had light green colour. US-214, 991, 2011/CHIVAR-2, 3, 4,5,6,7, 2011/CHIVAR-8, 9, long fruits were observed among the genotypes.
author	8, 9, long truits were observed among the genotypes.

INTRODUCTION

Chilli (*Capscium annuum* L.) 2n = 24 is an important vegetable as well as condiment crop, widely grown throughout India. Green fruit of chilli are one of the richest sources of antioxidant vitamins such as vitamin A, C and E. The capsaicin alkaloid is responsible for pungency and it has medicinal value also. In India, the major Chilli growing states are Andhra Pradesh, Karnataka, Maharashtra, Orissa, Tamil Nadu, Madhya Pradesh and Rajasthan. In India, it occupies 0.805 million ha area and annual production 1.276 million tons, while, in Madhya Pradesh it occupies 0.054 million ha area and produce 0.093 million tons (NHB, 2013-14).

Chilli is an often cross pollinated crop with high natural cross pollination and this also contributes to its variability, the aim of any breeding program depends on genetic diversity, characters association and direct and indirect effects on yield and its component characters. Before going to breeding programme through selection it is essential to know the importance and inter association of various components and their association with yield. The correlation coefficient analysis measures the mutual relationship between various characters and it determines the component traits on which selection can be relied upon the effect of improvement. Previous study resulted that fruit yield plant⁻¹ expressed highly significant and positive correlation with green fruit yield ha⁻¹ by Rathod et al. (2002), Dipendra Gautam (2003), Ajjapplavara et al. (2005), Abu and Uguru (2006), Vani et al. (2007). Dry fruit yield plant

¹ has positive correlation with green fruit yield plant¹, fruit yield plot¹ and fruit yield ha⁻¹ by Mohammed Ibrahim *et al.* (2001), Abu and Uguru (2006), Farhad *et al.* (2008) and Pandit *et al.* (2009). Assessing the direct and indirect effects of each component towards yield through path coefficient analysis would help in identifying the reliable characters contributing to yield. By keeping this objective in view the present investigation was undertaken. Fruit yield plant⁻¹ expressed positive indirect effect on green fruit yield plant⁻¹ number of seed fruit ⁻¹, dry fruit weight, fruit width, number of fruit plant⁻¹, number of primary branch at 60 DAT, green fruit weight, dry fruit yield plant⁻¹, fruit length and seed yield plant⁻¹, similar results were also reported by Singh and Singh (2004), Datta and Jana (2010), Raika *et al.* (2005), Shabarish *et al.* (2014), Sheela *et al.* (2014) in Cluster bean.

The main objective of plant breeder is to evolve high yielding varieties. It is therefore, need of plant breeder to know the extent of association between yield and its various components, which will facilitate desirable selection based on component traits. Path analysis is a standardised partial regression coefficient measuring the direct influence of one variable upon the other and permits separation of correlation coefficient into components of direct and indirect effects. Correlation and path coefficient could be necessary tools at the disposal of the breeder in improvement programme for enhancing the production and productivity of Chilli, by keeping this objective in view the present investigation was undertaken.

MATERIALS AND METHODS

Field experiments were conducted during Rabi season of 2012-13 at Vegetable Research Farm, Department of Horticulture and J.N.K.V.V., Jabalpur (Madhya Pradesh) to study "correlation and path co-efficient analysis of guantitative and gualitative traits in Chilli (Capsicum annuum L.)". The experiment was laid out in Randomized Complete Block Design (RCBD) with 25 genotypes (23 genotypes + 2 check) and 3 replications, 17 genotypes were collected from IIVR, Varanasi namely 2011/ CHIVAR-1 to 9, 2012/CHIVAR-2,3,4,5,6,8,9, KA2 (C), seven genotypes were collected from Agri-seeds, Hyderabad namely US-611, 214, 947, 349, 113, 991, HP-11-306 and another check LCA-334 (C) was collected from LAM, Guntur. Appropriate agronomic practices were followed to raise a good crop. Various observations were recorded on morphological characters viz., Plant height (cm) at 30, 60, 90 & 120 DAT, Number of primary branches plant⁻¹ at 30, 60 DAT, Phonological parameters viz., days to first flowering, days to 50% flowering, days to first picking, yield parameters viz., fruit length (cm), fruit width (cm), number of fruits plant¹, fruit weight of green chilli (g), fruit weight of dry chilli (g), fruit yield plant⁻¹, fruit yield plot⁻¹(kg), fruit yield ha⁻¹ (q),green fruit yield plant ¹(g), dry fruit yield plant⁻¹. Correlation coefficients were calculated for all quantitative and qualitative traits combinations at phenotypic, genotypic and environmental levels by the formula given by Miller et al. (1958) and path co-efficient analysis developed by Wright (1921) and elaborated by Dewey and Lu (1959).

RESULTS AND DISCUSSION

Correlation coefficient analysis

Correlation coefficient wee workout at phenotypic level for all possible combination of yield and its attributing traits in chilli (Table1) results indicated that's genotypic coefficient of correlation in general were of higher magnitude than the corresponding phenotypic ones.

Highly significant positive association was observed with fruit length (0.922) and negative but significant correlation with fruit yield plot¹ (-0.555), fruit yield ha⁻¹ (-0.555), number of seed fruits⁻¹ (-0.476), dry fruit weight (-0.469), seed yield fruit⁻¹ (-0.373) and fruit width (-0.323), similar results were also reported by Benchaim and Paran (2000). A highly significant and negative correlation of fruit length with fruit yield plot⁻¹ (-0.635), fruit yield ha⁻¹ (-0.635), number of seed fruit⁻¹ (0.539), dry fruit weight (-0.488), seed yield plant⁻¹ (-0.449), fruit weight (-0.443) and dry fruit yield plant⁻¹ (-0.259). Fruit width expressed highly significant and positive correlation with fruit yield plot ¹ (0.270) and fruit yield ha⁻¹ (0.270). Fruit weight of green chilli showed highly significant and positive correlation with fruit yield plot⁻¹ (0.283) and fruit yield ha⁻¹ (0.283), similar results were also reported by Munshi et al. (2000) and Tembhurne et al. (2009). Fruit weight of dry chilli showed highly significant and positive correlation with number of seeds fruit⁻¹ (0.699), fruit yield plot⁻¹ (0.403) and fruit yield ha⁻¹ (0.403), similar results were also reported by Munshi et al. (2000). Highly significant and positive correlation of dry fruit yield plant¹ (0.668) and seed yield plant¹ (0.505). Highly significant and positive correlation of fruit yield plot⁻¹ (0.406), fruit yield ha⁻¹(0.405) and green fruit yield plant⁻¹ (0.264). Highly significant and positive correlation of seed yield plant¹ with dry fruit yield plant¹ (0.537), fruit yield plot¹ (0.368) and fruit yield ha⁻¹ (0.368), similar results were also reported by Gagala *et al.* (2007), Shabarish *et al.* (2014), Sheela *et al.* (2014) in Cluster bean. Dry fruit yield per plant showed highly significant and positive correlation with green fruit yield plant¹ (0.573), fruit yield plot¹ (0.390) and fruit yield ha⁻¹ (0.390). Similar results were also reported by Mohammed Ibrahim *et al.* (2001), Dipendra and Gautam (2003), Ajjapplavara *et al.* (2005), Abu and Uguru (2006), Farhad *et al.* (2008), Pandit *et al.* (2009), Tembhurne *et al.* (2009), Fruit yield plot¹ expressed highly significant and positive correlation with fruit yield ha⁻¹ (0.999).

Path co-efficient analysis:

Path coefficient analysis permits partitioning of the correlation coefficients into components of direct and indirect effects. In general, it was observed that genotypic direct and indirect effects were higher than their corresponding phenotypic values. The results obtained in phenotypic direct and indirect effects are presented in (Table2).

Direct effects

Path coefficient analysis of different characters contributing towards the highest positive direct effect via green fruit yield plant⁻¹ showed that fruit yield ha⁻¹ (9.941), number of fruits plant⁻¹ (0.366), plant height at 90 DAT (0.145), seed yield plant⁻¹ (0.106), days to flower initiation (0.097), plant height at 60 DAT (0.095), dry fruit yield plant¹ (0.061), number of primary branches plant¹ at 30 DAT (0.056), number of primary branches plant⁻¹ at 60 DAT (0.053), The results corroborated the findings of Bhalekar et al. (2002), Dipendra and Gautum (2003), Singh and Singh (2004), Sreelathakumar and Rajamony (2004), Vani et al. (2007), Pandit et al. (2009), Datta and Jana (2010). But highest negative direct effect via green fruit yield plant¹ showed that fruit yield plot¹ (-9.914), plant height at 30 DAT (0.106), dry fruit weight (-0.090), plant height at 120 DAT (-0.085), fruit width (-0.049), the results corroborated the findings of Karad et al. (2002).

Indirect effect

Fruit length was reported to have positive indirect effect on green fruit yield via dry fruit yield plant¹ (0.015), While negative indirect effect via dry fruit weight (-0.015) were expressed. Fruit width exhibited positive indirect effect on green fruit yield plant⁻¹ via dry fruit weight (0.022), number of fruits plant⁻¹ (0.017), However, the negative indirect effect of this trait was observed via fruit yield plot-1 (-0.014) and fruit yield ha-1 (-0.014). Fruit weight of green chilli expressed positive indirect effect on green fruit yield plant¹ through was dry fruit yield plant¹ (0.024) and negative indirect effect via, number of seeds fruit¹ (-0.017), number of fruits plant¹ (-0.015) and fruit yield plot¹ (-0.013). Fruit weight of dry chilli evaluated higher values of indirect effect on green fruit yield plant⁻¹ through via seed yield plant¹ (-0.060), fruit yield plot⁻¹ (-0.015), fruit yield ha⁻¹ (-0.015). Number of fruits plant¹ expressed positive indirect effect on green fruit yield plant¹ via fruit yield plot⁻¹ (0.143), fruit yield ha-1 (0.148), seed yield plant-1 (0.074) However, negative indirect effect was observed via number of seeds plant¹ (-0.045). Positive indirect effect of number of seeds fruit¹ on green fruit yield via dry fruit yield plant¹ (0.097) and

Plantheight (cm) G -0.043 0.077 -0.275 -0. No. of primary branches plant ¹ G 0.026 0.016 -0.177 -0. No. of primary branches plant ¹ G 0.026 0.016 -0.722 -0. Days to flower initiation C O 0.999 -0.722 -0. Days to flower initiation G O 0.298** -0.359** -0.559** -0.305** -0.305** -0. Days to flower initiation G O 0.298** -0.305** -0.305** -0. Days to first picking G P -0.305** -0. -0.305** -0. Pays to first picking P P -0.305** -0. -0.55 -0. -0.55 Pays to first picking G P -0.305** -0.55 -0.55 -0.55 -0.55 -0.55 -0.55 -0.55 -0.55 -0.55 -0.55 -0.55 -0.55 -0.55 -0.55 -0.55 -0.55 -0.55	0.304 -0.181 -0.235* -0.151 -0.774 -0.916 -0.772*** -0.416*** -0.471 -0.363 -0.222 -0.170 0.962 0.851 0.922*** 0.801**** 0.922****	0.248 -0 0.255* -0 0.499 -0 0.260* -0 0.223 -0 0.123 -0 0.128 -0 0.128 -0 0.128 -0 0.128 -0 0.304 0 -0.381 -0 -0.323** 0 -0.323** 0 -0.435** 0	0.116 0.0 0.080 0.0 0.353 0.7 0.053 0.2 0.057 0.6 0.080 0.3 0.056 0.0 0.056 0.0 0.057 0.056 0.0 0.056 0.0 0.057 0.056 0.0 0.056	0.069 0.2 0.062 0.2 0.731 0.3 0.247* 0.1	0.229 -(0 1 2 1	0 033			
P 0.026 0.016 -0.177 ranches plant ¹ G 0.959 -0.722 nitiation G 0.298** -0.359* wering G -0.298** -0.305** wering P -0.305** ing G -0.305** P -0.305** P -0.305**	* *	* *					171	CZU.U-	-0.042	0.100	0.100
ranches plant ¹ G 0.959 -0.722 itiation G 0.298** -0.359** wering G 0.298** -0.305** wering G 0.298** -0.305** ing G 0.298** -0.305** P 0.298** -0.305** P 0.298** -0.305** P 0.298** -0.305**	* * * * * *	* *				-0.085 0.7	0.130	-0.007	-0.039	0.088	0.088
P 0.298** -0.359** Mering G -0.305** -0.305** Mering G -0.305** P -0.305** C -0.305** P -0.305**	* * *	* *					548	0.720	0.565	0.959	0.959
itiation G -0.559 wering G -0.305** wering P -0.305** ing P -0.305** P -0.305**	* *	* *			Ū	0.382*** 0.3	0.270*	0.285^{*}	0.229^{*}	0.384***	0.384***
wering G -0.305** ing G G C C C C C C C C C C C C C C C C C	* *	* *	0 1 1 1				0.025	0.355	0.087	0.641	0.641
wering ing G C C C C C P C C	* *	* *		*		0.307** -0.		0.215	0.070	0.410***	0.410^{***}
a U a U a U a 	*	* *			'		-0.271	-0.094	-0.250	-0.474	-0.474
ß	0.943 0.922 ***	* *		* *	'	* *		-0.090	-0.217	-0.395***	-0.395***
	0.922***	*						-0.188	-0.206	-0.625	-0.625
		* *		* *		*	*	-0.156	-0.166	-0.555***	-0.556***
		*	'	·			-0.478	-0.289	-0.249	-0.684	-0.684
			-0.0000	0.488*** -0.		-0.539*** -0.	-0.449***	-0.259*	-0.221	-0.635***	-0.635***
P		q	0.172 0.1	·	-0.183 -(0.028	0.031	0.290	0.290
		Ŷ	-0148 0.1	0.153 -0.			0.086	0.049	0.033	0.270^{*}	0.270^{*}
Fruit weight of green chilli (g) G			-0.0	0.002 0.0	0.085 -(0.228	-0.079	0.288	0.289
P			-0.0	0.006 0.0)- 460.0	-0.142 0.7	0.150	0.194	-0.081	0.283^{*}	0.283^{*}
Fruit weight of dry chilli (g) G				- -	-0.064 0	0.722 0.0	0.070	0.184	0.060	0.423	0.423
Ь				- 0	0.054 0	0.699*** 0.0		0.180	0.055	0.403^{***}	0.403***
No. of fruit plant ¹ G					0	0.057 0.1		0.726	0.172	0.209	0.209
Ь					0	0.052 0.1	0.505***	0.668***	0.162	0.172	0.173
No. of seeds fruit ⁻¹ G						0	0.186	0.209	0.271	0.426	0.426
						0	0.181	0.202	0.264^{*}	0.406***	0.405***
Seed yield plant ¹ (g) G								0.582	0.112	0.405	0.405
								0.537***	0.116	0.368^{**}	0.367^{**}
Dry fruit yield plant ⁻¹ (g) G									0.578	0.435	0.435
									0.573***	0.390***	0.390***
Green fruit yield plant ¹ (g) G										0.093	0.093
										0.090	0.090
Fruityield plot ¹ (kg) G											1.000
٩-											0.999^{**}

Table 1: Estimate of genotypic (G) and phenotypic (P) correlation coefficient between yield and its components in chilli

Characters PLHT (cm)	PLHT (c	(ur			NPBR		DFR	DFFL	DFP	FRLT (cm)	FRWT (cm)	GFW (g)	DFW (g)	NFRP	NSPF	SYPP (g)	DFYP (g)	FYPL (kg)	FYPH (q)	GFYP (g)
	30	60	90	120	30DAT	60DAT														
	-	2	3	4	5	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20
PLHT 30	-0.398	-0.371	-0.319	-0.270	0.106	0.012	0.121		0.089	-0.015	-0.025	-0.015	-0.016	-0.004	-0.032	0.029	0.007	-0.006	-0.006	0.018
(am) 60	0.008	0.008	0.007	0.005	-0.002	0.001	-0.002	-0.002	-0.001	0.001	0.001	0.000	0.000	-0.001	0.000	-0.001	-0.001	0.001	0.001	0.094
06	0.610	0.677	0.761	0.617	-0.152	0.107	-0.102		-0.116	0.251	0.124	0.022	0.095	-0.016	0.127	0.004	-0.103	0.199	0.199	0.174
120	0.280	-0.269	-0.335	-0.413	0.018	-0.032	0.114		0.075	-0.102	0.048	-0.029	-0.095	0.039	-0.050	0.010	0.017	-0.041	-0.041	0.026
NPBR 30	0.024	0.027	0.018	0.004	-0.091	-0.088	0.066		0.084	-0.046	0.032	-0.067	-0.033	-0.085	-0.050	-0.066	-0.052	-0.088	-0.088	1.119
60	0.004	-0.018	-0.016	-0.009	-0.110	-0.114	0.064		0.042	-0.026	0.007	-0.077	-0.018	-0.062	-0.003	-0.041	-0.010	-0.073	-0.073	0.774
DFRI			-0.013	-0.026	-0.068	-0.053	0.094		0.080	-0.029	0.008	-0.052	0.015	-0.054	-0.026	-0.009	-0.024	-0.045	-0.045	-0.497
DFFL			0.146	0.190	0.484	0.295	-0.601		-0.589	0.238	0.035	0.330	-0.025	0.327	0.253	0.118	0.129	0.391	0.391	-0.596
DFP			-0.063	-0.075	-0.380	-0.151	0.353		0.414	-0.201	0.004	-0.210	-0.004	-0.233	-0.198	-0.120	-0.103	-0.239	-0.239	-0.674
FRLT(cm			-0.004	-0.003	-0.006	-0.003	0.003		0.005	-0.011	0.002	-0.002	0.002	0.001	-0.001	0.000	0.000	-0.003	-0.003	0.249
FRWT(cm)			-0.037	0.027	0.081	0.013	-0.018		-0.002	0.040	-0.230	0.001	-0.020	0.033	-0.039	-0.052	0.018	-0.007	-0.007	0.147
GFW(g)	-0.003	-0.005	-0.003	-0.007	-0.068	-0.063	0.051		0.049	-0.015	0.000	-0.093	0.006	-0.067	-0.007	-0.017	-0.06	-0.035	-0.035	0.577
DFW(g)			-0.005	-0.009	-0.014	-0.006	-0.006		0.000	0.007	-0.003	0.003	-0.039	-0.002	-0.023	-0.029	-0.007	-0.008	-0.008	0.167
NFRP			-0.128	-0.058	0.576	0.338	-0.353		-0.349	-0.035	-0.088	0.449	0.035	0.620	0.115	0.013	0.168	0.264	0.264	0.652
NSPF			-0.025	-0.018	-0.082	-0.004	0.041		0.072	-0.012	-0.025	-0.011	-0.086	-0.028	-0.150	-0.087	-0.017	-0.061	-0.061	0.357
SYPP(g)			0.002	-0.007	0.212	0.105	-0.028		-0.085	0.009	0.067	0.054	0.214	0.062	0.172	0.295	0.171	0.129	0.129	0.418
DFYP(g)		0		0.003	-0.042	-0.007	0.019		0.019	-0.002	0.006	-0.005	-0.013	-0.020	-0.008	-0.043	-0.075	-0.007	-0.007	0.177
FYPL(kg)			39.396	15.121	144.78	96.771	-71.59	_	-103.22	43.88	43.500	63.93	31.640	64.300	61.130	65.760	14.084	150.2	150.220	0.934
FYPH(q)	-2.095	-13.664		-15.047	-144.12	96.349	71.278		102.761	-43.68	-43.130	-63.65	-31.500	-64.022	-60.850	-65.46	14.018	-150.2	-150.220	0.934
R square = 0.960 Residual effect G = 0.197; PLHT: Plant height (cm), NP	0.960 Res	idual effec	t G = 0.15	7; PLHT: F	Plant heigh	t (cm), NPB	R: No. of pri	rimary brac	ches plant ⁻¹	, DFRI : Day	DFRI : Days to flower in	nitiation, DFI	FL: Days to	50% flowering, DFP	ring, DFP :	Days to first picking,	t picking, FF	RLT: Fruit le	I: Fruit length (cm), F	FRWT: Fruit
width, GFW: Green fruit weight (g), DFW: Dry fruits weight (g), NFRP : No.	/: Green fr	uit weight	(g), DFW:	Dry fruits w	/eight(g), N	JFRP:No.c	of fruits plan	it ¹ , NSPF : N	No. of seeds	Is fruit ⁻¹ , SYF	PP: Seed yield	d plant ⁻¹ , DF	YP: Dry fruit	yield plant ⁻¹	, GFYP: Gı	Green fruit yie	eld plant ⁻¹ (g)	, FYPL : Fru	it yield plot ⁻¹	(kg), FYPH

fruit yield plot¹ (0.011). Seed yield plant¹ manifested positive indirect effect on green fruit yield plant¹ through effect of dry fruit weight (0.071), number of seed fruits⁻¹ (0.057), fruits yield plot¹ (0.041) and number of primary branch plant¹ at 30 DAT (0.030), While negative indirect effect was recorded via days to first picking (-0.027) and days to 50% flowering (-0.016). Dry fruit yield plant¹ expressed positive indirect effect on green fruit yield plant¹ through fruit yield ha⁻¹ (0.041) and negative indirect effect via seed yield plant¹ (-0.011). Similar results were also reported by Sarkar *et al.* (2009), Datta and Jana (2010).

Fruit yield plot¹ manifested positive indirect effect on green fruit yield plant¹ via days to 50 flowering (4.403), days to flower initiation (1.587) and days to first picking (0.807). While negative indirect effect was observed via number of seed fruit ¹(-9.366), dry fruit weight (3.817), fruit width (-2.633), number of fruit plant¹ (-2.437), green fruit weight (-2.230), number of primary branch plant⁻¹ at 60 DAT (-2.050), dry fruit yield plant⁻¹ ¹(-2.019), fruit length (-1.588) and seed vield plant⁻¹(1.207). Fruit yield ha-1 expressed positive indirect effect on green fruit yield plant⁻¹ number of seed fruit ⁻¹ (9.611), dry fruit weight (3.933), fruit width (2.833), number of fruit plant ⁻¹ (2.716), number of primary branch at 60 DAT (2.715), green fruit weight (2.507), dry fruit yield plant⁻¹ (2.212), fruit length (1.773) and seed yield plant¹ (1.471). Whereas, higher negative indirect values was recorded via days to 50% flowering (-4.785), days to flower initiation (-1.860) and days to first picking (1.242). Similar results were also reported by Bhalekar et al. (2002), Singh and Singh (2004), Sarkar et al. (2009), Datta and Jana (2010), Shabarish et al. (2014) Sheela et al. (2014) in Cluster bean.

Qualitative traits

All the genotypes (Table3) showed pendent bearing habit except US-349, HP-11-306, 2011/CHIVAR-4, 2012 CHIVAR-2. Colour of fruit was observed to be light green and dark green colour. Genotype US-611, US-214, US-947, US-349, US-113, US-991, 2011/CHIVAR-3, 2011/CHIVAR-4, 2011/CHIVAR-5, 2012/CHIVAR-5, 2012/CHIVAR-5, 2012/CHIVAR-6, 2012/CHIVAR-6, 2012/CHIVAR-9, LCA-334 (c) and KA-2 (c) had light green colour. Remaining genotypes exhibited dark green colour.

Size of fruit was observed to be long, medium and short. Long fruits were observed in genotypes US-214, US-991, 2011/ CHIVAR-2, 2011/CHIVAR-3, 2011/CHIVAR-4, 2011/CHIVAR-5, 2011/CHIVAR-6, 2011/CHIVAR-7, 2011/CHIVAR-8, 2011/ CHIVAR-9. Whereas, genotypes US-947, US-349, US-113, HP-11-306, 2011/CHIVAR-1, 2012/CHIVAR-3, 2012/CHIVAR-4, 2012/CHIVAR-5, 2012/CHIVAR-6, 2012/CHIVAR-8 were exhibited medium fruit, Genotype US-611, 2012/CHIVAR-2, 2012/CHIVAR-9, LCA-334 (c), KA-2 (c) found small size. Similar results were also reported by Dipendra and Gautam (2003), Benchaim and Paran (2000), Datta and Jana (2010).

ACKNOWGMENT

Thanks to most esteemed Dr.P.K.Jain (Uni. Prof. & Head) and Dr. S.K.Sengupta (Senior Scientist), Department of Horticulture, College of Agriculture, JNKVV, Jabalpur for his most valuable and inspiring guidance, close supervision, constant

Table 2: Estimates of phenotypic path co-efficient analysis showing direct and indirect effect on fruit yield plant' in chilli

Fruit yield ha⁻¹ (q).

Table 3: Qualitative characters in 25 Chilli genotypes

S.No.	Genotypes	Fruit size	Fruit colour	Bearing habit
1.	US-611	Short	Light green	Pendent
2.	US-214	Long	Light green	Pendent
3.	US-947	Medium	Light green	Pendent
4.	US-349	Medium	Light green	Erect
5.	US-113	Medium	Light green	Pendent
6.	US-991	Long	Light green	Pendent
7.	HP-11-306	Medium	Dark green	Erect
8.	2011/CHIVAR-1	Medium	Dark green	Pendent
9.	2011/CHIVAR-2	Medium	Dark green	Pendent
10.	2011/CHIVAR-3	Long	Light green	Pendent
11.	2011/CHIVAR-4	Long	Light green	Erect
12.	2011/CHIVAR-5	Long	Light green	Pendent
13.	2011/CHIVAR-6	Long	Dark green	Pendent
14.	2011/CHIVAR-7	Long	Dark green	Pendent
15.	2011/CHIVAR-8	Long	Dark green	Pendent
16.	2011/CHIVAR-9	Medium	Light green	Pendent
17.	2012/CHIVAR-2	Short	Light green	Erect
18.	2012/CHIVAR-3	Medium	Light green	Pendent
19.	2012/CHIVAR-4	Medium	Light green	Pendent
20.	2012/CHIVAR-5	Medium	Light green	Pendent
21.	2012/CHIVAR-6	Medium	Light green	Pendent
22.	2012/CHIVAR-8	Medium	Dark green	Pendent
23.	2012/CHIVAR-9	Short	Light green	Pendent
24.	LCA-334 (Check)	Short	Light green	Pendent
25.	KA-2 (Check)	Short	Light green	Pendent

encouragement and constructive criticism coupled with valuable suggestions during the course of this investigation and in preparation of this manuscript.

REFERENCES

Abu, N. E. and Uguru, M. I. 2006. Evaluation of genetic variations in growth and yield components of aromatic pepper lines in a derived savanna ecology of Nigeria. *Agro. Sci.* 5(1): 1-7.

Ajjapplavara, P. S., Patil, S. S., Hosamani, R. M., Patil, A. A. and Gangaprasad, S. 2005. Correlation and path coefficient analysis in chilli. *Karnataka J. Agri. Sci.* **18(3)**: 748-751.

Benchaim, A. and Paran, I. 2000. Genetic analysis of quantitative traits in pepper (*Capsicum annuum* L.). J. the American Society for Horti. Sci. 125(1): 66-70.

Bhalekar, M. N., Warded, S. D. and Gupta, N. S. 2002. Path coefficient analysis in chilli. National Seminar on opportunity and potential of spices for crop diversification held at JNKVV, Jabalpur during January. pp. 265-266.

Datta, S. and Jana, J. C. 2010. Genetic variability, heritability and correlation in chilli genotypes under Terai zone of West Bengal. *SAARC J. Agri.* 8(1): 33-45.

Dewey, D. R. and Lu, K. H. 1959. A correlation and path coefficient analysis of components of crested wheat grass seed production. *Agron. J.* **51**: 515-518.

Dipendra, G. and Gautam, B. P. 2003. Correlation and path coefficient analysis in chilli (*Capsicum spp.*). *Agri. Sci. Digest.* 23(3): 162-166.

Farhad, M., Hasanuzzaman, M., Biswas, B.K., Azad, A.K. and Arifuzzaman, M. 2008. Reliability of yield contributing characters for improving yield potential in chilli (*Capsicum annuum* L.). J. Sustainable Crop Prod. 3(3): 30-38.

Gagala, N., Ahmed, N., Hussain, K., Qadir, R. and Das, Z. A. 2007. Seed yield and its correlation studies in Bell pepper (*Capsicum annuum Var. grosum* L.). *The Asian J. Horti.* **2(2):** 181-183. Karad, S. R., Raikar, G. R. and Navale, P. A. 2002. Genetic divergence in chilli. J. Maharashtra Agri. Uni. 27(2): 143-145.

Miller, P. A., Williams, J. C., Robinson, H. P. and Comstoc, R. E. 1958. Estimates of genotypic variance and covariance in upland cotton. *Agron. J.* 50: 126-131.

Mohammed, I., Ganiger, V. M. and Yenjerappa, S. T. 2001. Genetic variability, heritability, genetic advance and correlation studies in chilli. *Karnataka J. Agri. Sci.* **14(3):** 784-787.

Munshi, A. D., Behra, T. K. and Gyanendra, S. 2000. Correlation and path coefficient analysis in chilli. *Indian J. Horti.* 57(2): 157-159.

Pandit, M. K., Muthukumar, P. and Mukhopadhyay, T. P. 2009. Genetic variability, character association and path analysis in chilli (*capsicum annuum* L.) genotypes. ICH p. 41.

Rathod, R. P., Deshmukh, D. T, Ghode, P. B. and Gonge, V.S. 2002. Correlation and path analysis studies in chilli (*Capsicum annuum* L.). Haryana J. Horti. Sci. **31(1/2):** 141-143.

Sarkar, S. Murmu, D. Chattopadhyay, A. and Hazra, P. 2009. Genetic variability, correlation and path analysis of some morphological characters in chilli. *J.Crop and Weed.* 5(1): 162-166.

Shabarish, P. R. and Dharmatti, P. R. 2014. Correlation and path analysis for cluster bean vegetable pod yield. *The bioscan.* 9(2): 811-814.

Sheela, N., Malaghan, M. B., Madalageri and Y. K., Kotikal 2014. Correlation and path analysis in cluster bean [*Cyamopsis tetragonoloba* (L.) taub.] for vegetable pod yield and its component characters. *The Bioscan* (supplement on genetics and plant breeding). **9(4):** 1609-1612.

Singh, M. D. and Singh, M. G. 2004. Correlation and path analysis studies in selected local chillies (*Capsicum annuum* L.). *Envi. and Eco.* 22(Spl.4): 672-675.

Sreelathakumary, I. and Rajamony, L. 2004. Correlation and path coefficient analysis for yield in hot chilli (*Capsicum chinense* Jacq.) *Capsicum and Eggplant Newsletter.* 23: 53-56.

Tembhurne, B. V., Shrivastava, R. K., Naidu, A. K. and Rao, S. K.

2009. Yield performance of chilli hybrid for Kymore plateau and Satpura Hill Region of Madhya Pradesh. ICH p. 41.

Vani, S. K., Sridevi, O. and Salimath, P. M. 2007. Genetic divergence

in chilli (*Capsicum annum* L.). *Annals of Biology*. **23(2)**: 123-128. Wright, S. 1921. Correlation and causation. *J. Agric. Res.* **20**: 557-587.